4.7 Article

Human reliability assessment during offshore emergency conditions

Journal

SAFETY SCIENCE
Volume 59, Issue -, Pages 19-27

Publisher

ELSEVIER
DOI: 10.1016/j.ssci.2013.04.001

Keywords

Human Factor; Risk Assessment; Offshore Emergency; Human Reliability Analysis (HRA); Dependency and Uncertainty in HRA

Ask authors/readers for more resources

This paper presents a quantitative approach to Human Reliability Analysis (HRA) during emergency conditions in an offshore environment. Due to the lack of human error data for emergency conditions most of the available HRA methodologies are based on expert judgment techniques. Expert judgment suffers from uncertainty and incompleteness due to partial ignorance, which is not considered in available techniques. Furthermore, traditional approaches suffer from unrealistic assumptions regarding the independence of the human factors and associated actions. The focus of this paper is to address the issue of handling uncertainty associated with expert judgments with evidence theory and to represent the dependency among the human factors and associated actions using a Bayesian Network (BN) approach. The Human Error Probability (HEP) during different phases of an emergency is then assessed using a Bayesian approach integrated with an evidence theory approach. To understand the applicability of the proposed approach, results are compared with an analytical approach: Success Likelihood Index Methodology (SLIM). The comparative study demonstrates that the proposed approach is effective in assessing human error likelihood. In addition to being simple, it possesses additional capability, such as updating as new information becomes available and representing complex interaction. Use of the proposed method would provide an effective mechanism of human reliability assessment in hazardous operations. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available