4.6 Article

Optical property modulation of Fmoc group by pH-dependent self-assembly

Journal

RSC ADVANCES
Volume 5, Issue 90, Pages 73914-73918

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra16412e

Keywords

-

Funding

  1. Israeli National Nanotechnology Initiative
  2. Helmsley Charitable Trust for a Focal Technology Area on Nanomedicine for Personalized Theranostics
  3. Centre for Nanoscience and Nanotechnology of Tel Aviv University

Ask authors/readers for more resources

The modification of short peptides with the 9-fluorenylmethyloxycarbonyl group (Fmoc) results in a very efficient self-assembly propensity of these building blocks. Nevertheless, the influence of self-organization on the optical properties of the Fmoc group per se is still not fully understood. We envision that Fmoc-modified 5-aminopentanoic acid (Fmoc-5), which has similar molecular dimensions to the highly studied Fmoc-diphenylalanine peptide, could serve as a simple non-peptide model that possesses inherently good self-organization properties without amide-backbone contributions. Herein, we demonstrate that Fmoc-5 molecules self-assemble to form plate-like crystals at pH 2.0, where Fmoc groups are mainly organized in anti-parallel arrangements and form 2-D quantum-well confined structures (2-D QW), exhibiting a dominant fluorescent emission peak at 324 nm and a step-like absorbance from 260 to 300 nm. At pH 10.0 Fmoc initially exhibits its inherent optical properties, since Fmoc-5 hydrolyses and cleaved Fmoc groups self-assemble to form nanovesicles which further coalesce with each other, a new emission peak at 467 nm and a quasi-continuous absorbance emerges and dominates in fluorescence and UV-vis absorption, respectively. Our findings suggest that the optical properties of Fmoc could be modulated through pH-dependent self-assembly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available