4.2 Article

Exogenous proline alleviates the effects of H2O2-induced oxidative stress in wild almond species

Journal

RUSSIAN JOURNAL OF PLANT PHYSIOLOGY
Volume 59, Issue 6, Pages 788-798

Publisher

PLEIADES PUBLISHING INC
DOI: 10.1134/S1021443712060167

Keywords

Prunus; antioxidant enzymes; electrolyte leakage; hydrogen peroxide; lipid peroxidation; oxidative damage; proline; SOD isoforms

Categories

Funding

  1. Shahrekord University

Ask authors/readers for more resources

The effect of proline on the antioxidant system in the leaves of eight species of wild almond (Prunus spp.) exposed to H2O2-mediated oxidative stress was studied. The levels of endogenous proline (Pro) and hydrogen peroxide, and the activities of total superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and guaiacol peroxidase (POD) were measured. The degradation of chlorophyll but not carotenoids occurred in leaves in the solution of 5 mM H2O2. An increase in membrane lipid peroxidation was observed in H2O2 treatment, as assessed by MDA level and percentage of membrane electrolyte leakage (EL). Significant increases in total SOD and CAT activities, as well as decreases in APX and POD activities, were detected in H2O2-treated leaves. The three SOD isoforms showed different behavior, as Mn-SOD activity was enhanced by H2O2, whereas Fe-SOD and Cu/Zn-SOD activities were inhibited. In addition, Pro accumulation up to 0.1 mu mol/g fr wt, accompanied by significant decreases in ascorbate and glutathione levels, was observed in H2O2-treated leaves. After two different treatments with 10 mM Pro + 5 mM H2O2, total SOD and CAT activities were similar to the levels in control plants, while POD and APX activities were higher if compared to the leaves exposed only to H2O2. Pro + H2O2 treatments also caused a strong reduction in the cellular H2O2 and MDA contents and EL. The results showed that Pro could have a key role in protecting against oxidative stress injury of wild almond species by decreasing membrane oxidative damage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available