4.6 Article

Preparation of copper doped magnetic porous carbon for removal of methylene blue by a heterogeneous Fenton-like reaction

Journal

RSC ADVANCES
Volume 5, Issue 88, Pages 72423-72432

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra12621e

Keywords

-

Funding

  1. National Natural Science Foundation of China [21374045, 21074049]
  2. National Science Foundation for Fostering Talents in Basic Research of the National Natural Science Foundation of China [J1103307]

Ask authors/readers for more resources

High-specific-surface-area copper doped magnetic porous carbon (CuFe2O4/Cu@C) was fabricated by annealing iron, copper and 1,3,5-benzenetricarboxylic ([Cu/Fe]-BTC) metal-organic coordination polymers, which were prepared via a one-pot solvothermal method. The novel CuFe2O4/Cu@C catalyst consists of Cu (3.80%), CuFe2O4 (64.84%), and C (31.36%). Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, elemental analysis, inductively coupled plasma, Brunauer-Emmett-Teller surface area measurement, and vibrating sample magnetometer analysis were used to characterize the materials. The as-prepared materials were employed as a heterogeneous Fenton's reagent with the addition of H2O2 for degradation of methylene blue (MB). The results showed that the materials effectively catalyzed H2O2 to generate hydroxyl radicals ((OH)-O-center dot). And due to their magnetism, the materials can be easily separated from wastewater to achieve repeatability. It also turned out that CuFe2O4/Cu@C had a higher catalytic activity than Fe3O4@C, which proved the importance of copper doped into the catalyst. This work indicated that porous carbon composites provide good support for the development of a highly efficient heterogeneous Fenton catalyst, which is useful for environmental pollution cleanup.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available