4.6 Article

The close circumstellar environment of Betelgeuse III. SPHERE/ZIMPOL imaging polarimetry in the visible

Journal

ASTRONOMY & ASTROPHYSICS
Volume 585, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201527134

Keywords

stars: individual: Betelgeuse; stars: imaging; supergiants; circumstellar matter; techniques: polarimetric; techniques: high angular resolution

Funding

  1. Programme National de Physique Stellaire (PNPS) of CNRS/INSU, France
  2. program CNTAC [CN2015A-6]
  3. NASA [NNH09AK731]
  4. FONDECYT [3130361]
  5. PHASE
  6. ONERA
  7. Observatoire de Paris, CNRS
  8. University Denis Diderot Paris 7
  9. French-Chilean exchange program ECOS-Sud/CONICYT

Ask authors/readers for more resources

The physical mechanism through which the outgoing material of massive red supergiants is accelerated above the escape velocity is unclear. Thanks to the transparency of its circumstellar envelope, the nearby red supergiant Betelgeuse gives the opportunity to probe the innermost layers of the envelope of a typical red supergiant down to the photosphere, i. e. where the acceleration of the wind is expected to occur. We took advantage of the SPHERE / ZIMPOL adaptive optics imaging polarimeter to resolve the visible photosphere and close envelope of Betelgeuse. We detect an asymmetric gaseous envelope inside a radius of 2 to 3 times the near-infrared photospheric radius of the star (R-star), and a significant H alpha emission mostly contained within 3 R-star From the polarimetric signal, we also identify the signature of dust scattering in an asymmetric and incomplete dust shell located at a similar radius. The presence of dust so close to the star may have a significant impact on the wind acceleration through radiative pressure on the grains. The 3 R-star radius emerges as a major interface between the hot gaseous and dusty envelopes. The detected asymmetries strengthen previous indications that the mass loss of Betelgeuse is likely tied to the vigorous convective motions in its atmosphere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available