4.5 Article

Two-step gradient-based reinforcement learning for underwater robotics behavior learning

Journal

ROBOTICS AND AUTONOMOUS SYSTEMS
Volume 61, Issue 3, Pages 271-282

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.robot.2012.11.009

Keywords

Reinforcement learning; Underwater robotics; Gradient descent algorithms; Actor-Critic algorithms; Model identification

Ask authors/readers for more resources

This article proposes a field application of a Reinforcement Learning (RL) control system for solving the action selection problem of an autonomous robot in a cable tracking task. The Ictineu Autonomous Underwater Vehicle (AUV) learns to perform a visual based cable tracking task in a two step learning process. First, a policy is computed by means of simulation where a hydrodynamic model of the vehicle simulates the cable following task. The identification procedure follows a specially designed Least Squares (LS) technique. Once the simulated results are accurate enough, in a second step, the learnt-in-simulation policy is transferred to the vehicle where the learning procedure continues in a real environment, improving the initial policy. The Natural Actor-Critic (NAC) algorithm has been selected to solve the problem. This Actor-Critic (AC) algorithm aims to take advantage of Policy Gradient (PG) and Value Function (VF) techniques for fast convergence. The work presented contains extensive real experimentation. The main objective of this work is to demonstrate the feasibility of RL techniques to learn autonomous underwater tasks, the selection of a cable tracking task is motivated by an increasing industrial demand in a technology to survey and maintain underwater structures. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available