4.4 Article

A comparative genomics approach identifies a PPR-DYW protein that is essential for C-to-U editing of the Arabidopsis chloroplast accD transcript

Journal

RNA
Volume 15, Issue 6, Pages 1142-1153

Publisher

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1261/rna.1533909

Keywords

chloroplast; RNA editing; accD; RARE1; pentatricopeptide; trans-factor

Funding

  1. NSF [0716888, 9975838]
  2. Direct For Biological Sciences
  3. Div Of Molecular and Cellular Bioscience [0716888] Funding Source: National Science Foundation

Ask authors/readers for more resources

Several nuclear-encoded proteins containing pentatricopeptide repeat ( PPR) motifs have previously been identified to be trans-factors essential for particular chloroplast RNA editing events through analysis of mutants affected in chloroplast biogenesis or function. Other PPR genes are known to encode proteins involved in other aspects of organelle RNA metabolism. A function has not been assigned to most members of the large plant PPR gene family. Arabidopsis and rice each contain over 400 PPR genes, of which about a fifth exhibit a C-terminal DYW domain. We describe here a comparative genomics approach that will facilitate identification of the role of RNA-binding proteins in organelle RNA metabolism. We have implemented this strategy to identify an Arabidopsis nuclear-encoded gene RARE1 that is required for editing of the chloroplast accD transcript. RARE1 carries 15 PPR motifs, an E/E+ and a DYW domain, whereas previously reported editing factors CRR4, CRR21, and CLB19 lack a DYW domain. The accD gene encodes the beta carboxyltransferase subunit of acetyl coA carboxylase, which catalyzes the first step in fatty acid biosynthesis in chloroplasts. Despite a lack of accD C794 editing and lack of restoration of an evolutionarily conserved leucine residue in the beta carboxyltransferase protein, rare1 mutants are unexpectedly robust and reproduce under growth room conditions. Previously the serine-to-leucine alteration caused by editing was deemed essential in the light of the finding that a recombinantly expressed unedited'' form of the pea acetyl coA carboxylase was catalytically inactive.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available