4.5 Editorial Material

RNA splicing control Yet another gene regulatory role for long nuclear noncoding RNAs

Journal

RNA BIOLOGY
Volume 8, Issue 6, Pages 968-977

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/rna.8.6.17606

Keywords

MALAT1; MALAT-1; non-coding RNA; nuclear RNA; nuclear domains; pre-mRNA splicing; alternative splicing

Funding

  1. NIGMS NIH HHS [R01 GM088252] Funding Source: Medline

Ask authors/readers for more resources

The mammalian genome harbors a large number of long non-coding RNAs (lncRNAs) that do not code for proteins, but rather exert their function directly as RNA molecules. LncRNAs are involved in executing several vital cellular functions. They facilitate the recruitment of proteins to specific chromatin sites, ultimately regulating processes like dosage compensation and genome imprinting. LncRNAs are also known to regulate nucleocytoplasmic transport of macromolecules. A large number of the regulatory lncRNAs are retained within the cell nucleus and constitute a subclass termed nuclear-retained RNAs (nrRNAs). NrRNAs are speculated to be part of crucial gene regulatory networks, and act as structural scaffolds of subnuclear domains. NrRNAs modulate gene expression by influencing chromatin modification, transcription and post-transcriptional gene processing. The cancer-associated Metastasis-associated lung adenocarcinoma transcript1 (MALAT1) is one such long nrRNA that regulates pre-mRNA processing in mammalian cells. Thus far, our understanding about the roles played by nrRNAs and their relevance in disease pathways is only 'a tip of an iceberg'. It will therefore be crucial to unravel the functions for the vast number of long nrRNAs, buried within the complex mine of the human genome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available