4.3 Article

INVASIBILITY DRIVES RESTORATION OF A FLOODPLAIN PLANT COMMUNITY

Journal

RIVER RESEARCH AND APPLICATIONS
Volume 31, Issue 10, Pages 1319-1327

Publisher

WILEY-BLACKWELL
DOI: 10.1002/rra.2836

Keywords

beta diversity; flood pulse; Kissimmee River; species turnover; wet prairie

Ask authors/readers for more resources

An understanding of the processes that determine plant community structure is a requisite for the planning and evaluation of restoration efforts on river floodplains. Variable disturbance regimes derived from flood pulses increase the susceptibility of river floodplains to colonizations by new species and establish invasibility as a potentially important factor in plant community assembly and dynamics. The role of invasibility in the restoration of a wet prairie community on the Kissimmee River floodplain in central Florida was evaluated by quantifying temporal species turnover rates during wet and dry season sampling over a 12-year pre-restoration and post-restoration period. Turnover rates increased with reestablishment of annual inundation regimes and were significantly greater on the reflooded floodplain than on the drained, channelized floodplain. Recurrent periods of increased invasibility were associated with repeated high-amplitude flood pulses and accompanied by increased diversity of plant communities within the wet prairie landscape. Neither invasibility nor beta diversity was strongly related to the variable hydroperiods or depths provided by local topography and restoration of seasonal hydrologic regimes. Results suggest that invasibility is a functional process by which the restored flood pulse has reestablished the structure and diversity of the wet prairie. Copyright (c) 2014 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available