4.3 Article

Loss of miR-200b promotes invasion via activating the Kindlin-2/integrin β1/AKT pathway in esophageal squamous cell carcinoma: An E-cadherin-independent mechanism

Journal

ONCOTARGET
Volume 6, Issue 30, Pages 28949-28960

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.5027

Keywords

miR-200; E-cadherin; invasion; prognosis; esophageal squamous cell carcinoma

Funding

  1. Natural Science Foundation of China-GuangDong Joint Fund [U1301227]
  2. National High Technology Research and Development Program of China [2012AA02A503, 2012AA02A209]
  3. National Science Foundation of China [81172264, 81472613]
  4. Canadian Institutes of Health Research

Ask authors/readers for more resources

Our previous studies have shown that loss of miR-200b enhances the invasiveness of esophageal squamous cell carcinoma (ESCC) cells. However, whether the miR-200-ZEB1/2-E-cadherin regulatory cascade, a master regulator of epithelial-to-mesenchymal transition (EMT), is involved in the regulation of ESCC invasion remains elusive. Here, we show that miR-200b represses ESCC cell invasion in vivo without altering the expression of E-cadherin and vimentin, two surrogate markers of EMT. However, an inverse correlation was observed between the expression levels of miR-200b and ZEB1/2 in both ESCC cell lines (n = 7, P < 0.05) and ESCC tumor samples (n = 88, P < 0.05). Methylation of E-cadherin gene was found to block the regulation of E-cadherin by the miR-200b-ZEB1/2 axis, indicating that an E-cadherin-independent mechanism can mediate the biological function of miR-200b in ESCC. We revealed that miR-200b suppresses the integrin beta 1-AKT pathway via targeting Kindlin-2 to mitigate ESCC cell invasiveness. In two independent cohorts of ESCC samples (n = 20 and n = 53, respectively), Kindlin-2 expression positively correlated with the activation status of both the integrin signaling pathway and the PI3K-AKT signaling pathway (both P < 0.01). These data highlight that suppression of the Kindlin-2-integrin beta 1-AKT regulatory axis is an alternative mechanism underlying the tumor suppressor function of miR-200b in ESCC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available