4.2 Review

Shear rheology of carbon nanotube suspensions

Journal

RHEOLOGICA ACTA
Volume 49, Issue 4, Pages 323-334

Publisher

SPRINGER
DOI: 10.1007/s00397-009-0422-4

Keywords

Shear flow; Suspension; Stiff polymer chains; Soft solids

Categories

Ask authors/readers for more resources

The shear rheology of carbon nanotube suspensions is reviewed from the perspective of colloid and polymer science. In the semi-dilute to concentrated regimes, the nature of the equilibrium or quiescent state is often dominated by nanotube entanglement and strong attractive inter-particle interactions that favor the formation of a disordered network or gel. The strength of this network with respect to the applied stress dictates the development of mesoscale structural anisotropy, first through a global yield stress and then through a critical stress for homogenization. For concentrated suspensions, the nematic liquid-crystalline order anticipated for high-aspect-ratio rigid rods has been observed in a few select scenarios. The opportunity for deeper theoretical insight is emphasized and intuitive physical arguments are offered that might serve as a foundation for future study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available