4.3 Article

Age-independent rise of inflammatory scores may contribute to accelerated aging in multi-morbidity

Journal

ONCOTARGET
Volume 6, Issue 3, Pages 1414-1421

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.2725

Keywords

multi-morbidity; C-reactive protein; systemic inflammation; Glasgow Prognostic Score; aging

Funding

  1. George Mason University

Ask authors/readers for more resources

Aging is associated with an increase in a chronic, low-grade inflammation. This phenomenon, termed inflammaging is also a risk factor for both morbidity and mortality in the elderly. Frequent co-occurrence of chronic diseases, known as multi-morbidity, may be explained by interconnected pathophysiology of these conditions, most of which depend on its inflammatory component. Here we present an analysis of the U.S. National Health and Nutrition Examination Survey data collected between 1999 and 2008, for the presence, and the number, of chronic diseases along with HDL-cholesterol, C-reactive protein, white blood cell count, lymphocyte percent, monocyte percent, segmented neutrophils percent, eosinophils percent, basophils percent, and glycohemoglobin levels. Importantly, even after adjustment for age and BMI, many inflammatory markers continued to be associated to multi-morbidity. C-reactive protein (CRP) levels and Glasgow Prognostic Score (GPS) were most dramatically increased in parallel with an accumulation of chronic diseases, and may be utilized as multi-morbidity predictors. These observations point at background inflammation as direct, age-independent contributor to an accumulation of the disease burden. Our findings also suggest a possibility that systemic inflammation associated with chronic diseases may explain accelerated aging phenomenon previously observed among the patients with heavy disease burden.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available