4.5 Article Proceedings Paper

Millimeter-wave system-on-chip advancement for fusion plasma diagnostics

Journal

REVIEW OF SCIENTIFIC INSTRUMENTS
Volume 89, Issue 10, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5035559

Keywords

-

Funding

  1. U.S. DOE [DE-FG02-99ER54531]

Ask authors/readers for more resources

Recent advances in radio-frequency system-on-chip technology have provided mm-wave fusion plasma diagnostics with the capability to overcome major challenges such as space inefficiency, inflexible installation, sensitivity, susceptibility to EMI, and prohibitively high cost of conventional discrete component assemblies as higher imaging resolution and data accuracy are achieved by increasing the number of channels. Nowadays, shrinking transistor gate lengths on fabrication techniques have enabled hundreds of GHz operation, which is suitable for millimeter-wave diagnostics on current and future tokamaks. The Davis Millimeter Wave Research Center (DMRC) has successfully developed V-band (55-75 GHz) transmitter and receiver chips for Microwave Imaging Reflectometer (MIR) instruments. The transmitter can illuminate 8 different frequencies simultaneously within 55-75 GHz. Moreover, the receiver has the capability to amplify the reflected signal (> 30 dB) while offering 10-30 x reduction in noise temperature compared to current MIR instruments. Plasma diagnostics requires ultra-wideband (more than 20 GHz) operation which is approximately nine times wider bandwidth than the recent commercial impetus for communication systems. Current efforts are underway for gallium-arsenide monolithic microwave integrated circuit receiver chips atW-band (75-110 GHz) and F-band (90-140 GHz) permitting measurements at higher toroidal magnetic fields. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available