4.6 Article

Very high-resolution digital elevationmodels: are multi-scale derived variables ecologically relevant?

Journal

METHODS IN ECOLOGY AND EVOLUTION
Volume 6, Issue 12, Pages 1373-1383

Publisher

WILEY
DOI: 10.1111/2041-210X.12427

Keywords

digital elevation models; generalized linear models; Landolt's ecological indicators; local scale; multi-scale analysis; temperature and humidity loggers; very high spatial resolution

Categories

Funding

  1. Velux Stiftung [705]
  2. Swiss National Science Foundation (SNSF) [CR3213149741/1]

Ask authors/readers for more resources

1. Digital elevation models (DEMs) are often used in landscape ecology to retrieve elevation or first derivative terrain attributes such as slope or aspect in the context of species distribution modelling. However, DEM-derived variables are scale-dependent and, given the increasing availability of very high-resolution (VHR) DEMs, their ecological relevance must be assessed for different spatial resolutions. 2. In a study area located in the Swiss Western Alps, we computed VHR DEMs-derived variables related to morphometry, hydrology and solar radiation. Based on an original spatial resolution of 0.5 m, we generated DEM-derived variables at 1, 2 and 4 m spatial resolutions, applying a Gaussian Pyramid. Their associations with local climatic factors, measured by sensors (direct and ambient air temperature, air humidity and soil moisture) as well as ecological indicators derived from species composition, were assessed with multivariate generalized linear models (GLM) andmixed models (GLMM). 3. Specific VHR DEM-derived variables showed significant associations with climatic factors. In addition to slope, aspect and curvature, the underused wetness and ruggedness indices modelled measured ambient humidity and soil moisture, respectively. Remarkably, spatial resolution of VHR DEM-derived variables had a significant influence on models' strength, with coefficients of determination decreasing with coarser resolutions or showing a local optimum with a 2 m resolution, depending on the variable considered. 4. These results support the relevance of using multi-scale DEM variables to provide surrogates for important climatic variables such as humidity, moisture and temperature, offering suitable alternatives to direct measurements for evolutionary ecology studies at a local scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available