4.5 Article

A novel apparatus for in situ compression of submicron structures and particles in a high resolution SEM

Journal

REVIEW OF SCIENTIFIC INSTRUMENTS
Volume 83, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4749256

Keywords

-

Funding

  1. German Science Foundation [PE427-20/1]

Ask authors/readers for more resources

We report on the development and characterization of a novel in situ manipulation device to perform stressing experiments on the submicron scale inside a high resolution field emission scanning electron microscope. The instrument comprises two main assembly groups: an upper part for positioning and moving a mounted probe and a force sensor as well as a specimen support as lower part. The upper part consists of a closed loop tripod piezoelectric scanner mounted on a self-locking coarse positioning stage. Two interlocked steel springs and a linear variable differential transformer measuring the springs' deflections compose the lower part of the instrument. This arrangement acts as force-sensor and sample support. In comparison to already well-established concepts a wide measuring range is covered by adjusting the spring constant between 30 N/m and 50000 N/m. Moreover, the new device offers striking advantages with respect to force calibration and sample deformation measurements. Force calibration is performed using the eigenfrequency of the force detection system directly inside the SEM. Deformation data are obtained with high accuracy by simultaneously recording displacements above and below the specimen. The detrimental apparatus compliance is determined, and the influence on measured data subsequently minimized: an easy to validate two-springs-in-series model is used for data correction. A force resolution in normal direction of 100 nN accompanied by a sample deformation resolution of 5 nm can be achieved with the instrument using an appropriate load cell stiffness. The capabilities and versatility of this instrument are exemplified by compression experiments performed on submicron amorphous silica particles. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4749256]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available