4.5 Article

Calibrated nanoscale capacitance measurements using a scanning microwave microscope

Journal

REVIEW OF SCIENTIFIC INSTRUMENTS
Volume 81, Issue 11, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3491926

Keywords

-

Funding

  1. Austrian Christian Doppler Society

Ask authors/readers for more resources

A scanning microwave microscope (SMM) for spatially resolved capacitance measurements in the attofarad-to-femtofarad regime is presented. The system is based on the combination of an atomic force microscope (AFM) and a performance network analyzer (PNA). For the determination of absolute capacitance values from PNA reflection amplitudes, a calibration sample of conductive gold pads of various sizes on a SiO2 staircase structure was used. The thickness of the dielectric SiO2 staircase ranged from 10 to 200 nm. The quantitative capacitance values determined from the PNA reflection amplitude were compared to control measurements using an external capacitance bridge. Depending on the area of the gold top electrode and the SiO2 step height, the corresponding capacitance values, as measured with the SMM, ranged from 0.1 to 22 fF at a noise level of similar to 2 aF and a relative accuracy of 20%. The sample capacitance could be modeled to a good degree as idealized parallel plates with the SiO2 dielectric sandwiched in between. The cantilever/sample stray capacitance was measured by lifting the tip away from the surface. By bringing the AFM tip into direct contact with the SiO2 staircase structure, the electrical footprint of the tip was determined, resulting in an effective tip radius of similar to 60 nm and a tip-sample capacitance of similar to 20 aF at the smallest dielectric thickness. (C) 2010 American Institute of Physics. [doi:10.1063/1.3491926]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available