4.5 Article

A charge coupled device camera with electron decelerator for intermediate voltage electron microscopy

Journal

REVIEW OF SCIENTIFIC INSTRUMENTS
Volume 79, Issue 4, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2902853

Keywords

-

Funding

  1. NCRR NIH HHS [RR12183] Funding Source: Medline
  2. NIGMS NIH HHS [GM75519, R01 GM075519, P01 GM051487] Funding Source: Medline

Ask authors/readers for more resources

Electron microscopists are increasingly turning to intermediate voltage electron microscopes (IVEMs) operating at 300-400 kV for a wide range of studies. They are also increasingly taking advantage of slow-scan charge coupled device (CCD) cameras, which have become widely used on electron microscopes. Under some conditions, CCDs provide an improvement in data quality over photographic film, as well as the many advantages of direct digital readout. However, CCD performance is seriously degraded on IVEMs compared to the more conventional 100 kV microscopes. In order to increase the efficiency and quality of data recording on IVEMs, we have developed a CCD camera system in which the electrons are decelerated to below 100 kV before impacting the camera, resulting in greatly improved performance in both signal quality and resolution compared to other CCDs used in electron microscopy. These improvements will allow high-quality image and diffraction data to be collected directly with the CCD, enabling improvements in data collection for applications including high-resolution electron crystallography, single particle reconstruction of protein structures, tomographic studies of cell ultrastructure, and remote microscope operation. This approach will enable us to use even larger format CCD chips that are being developed with smaller pixels. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available