4.6 Article

Investigation of Laminar Convective Heat Transfer for Al2O3-Water Nanofluids Flowing through a Square Cross-Section Duct with a Constant Heat Flux

Journal

MATERIALS
Volume 8, Issue 8, Pages 5321-5335

Publisher

MDPI
DOI: 10.3390/ma8085246

Keywords

nanofluid; convective heat transfer; square cross-section duct; laminar flow

Funding

  1. Ministry of Science and Technology of Taiwan [MOST 103-2221-E-168-013]

Ask authors/readers for more resources

The objective of this study is to numerically investigate the convective heat transfer of water-based Al2O3 nanofluids flowing through a square cross-section duct with a constant heat flux under laminar flow conditions. The effects of nanoparticle concentration and Peclet number on the heat transfer characteristics of Al2O3-water nanofluids are investigated. The nanoparticle diameter is 25 nm and six particle concentrations (0.2, 0.5, 1, 1.5, 2, and 2.5 vol.%) are considered. The numerical results show that the heat transfer coefficients and Nusselt numbers of Al2O3-water nanofluids increase with increases in the Peclet number as well as particle volume concentration. The heat transfer coefficient of nanofluids is increased by 25.5% at a particle volume concentration of 2.5% and a Peclet number of 7500 as compared with that of the base fluid (pure water). It is noteworthy that at the same particle volume concentration of 2.5%, the enhancement of the convective heat transfer coefficient of Al2O3-water nanofluid (25.5%) is much higher than that of the effective thermal conductivity (9.98%). Thus, the enhancement of the convective heat transfer cannot be solely attributed to the enhancement of the effective thermal conductivity. Additionally, the numerical results coincide well with the published experimental data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available