4.2 Article

Neural drive to respiratory muscles in the spontaneously breathing rat pup

Journal

RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY
Volume 202, Issue -, Pages 64-70

Publisher

ELSEVIER
DOI: 10.1016/j.resp.2014.07.018

Keywords

Respiration; Neonate; Electromyography

Ask authors/readers for more resources

The neonatal rodent serves as useful and appropriate model within which to study respiratory system development. Despite an extensive literature that documents respiratory control in vitro, in vivo studies have relied upon whole body plethysmography to determine measures of respiratory frequency and tidal volume. However, plethysmography restricts access to the animal and thus, respiratory muscle electromyographic (EMG) activities have not been recorded in these studies previously. Electromyography yields accurate information about neural respiratory center output to the musculature and therefore, about the control of breathing in the intact animal. In this case, we documented neural drive to respiratory pump and upper airway muscles, electrocardiogram (ECG) and chest wall motions in rat pups up to 10 days of age noting sighs, spontaneous central apneas and hypopneas in room air and with successive increments in fractional inspired CO2 (F1CO2). Our findings underscore the advantages of EMG recordings for purposes of determining the magnitude and distribution of neural drive to respiratory muscles and for characterizing the full range of breathing behaviors exhibited by rats in the early postnatal period. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available