4.4 Article

Apolipoprotein E-Deficient Mice Are Susceptible to the Development of Acute Lung Injury

Journal

RESPIRATION
Volume 87, Issue 5, Pages 416-427

Publisher

KARGER
DOI: 10.1159/000358438

Keywords

Apolipoprotein E; Acute lung injury; Acid aspiration; Hyperoxia; Oxidized low-density lipoprotein; Gastric acid aspiration

Funding

  1. Ontario Thoracic Society/Ontario Lung Association
  2. Western University Department of Medicine, Program of Experimental Medicine
  3. National Institutes of Health NIEHS [Z01 ES102005]

Ask authors/readers for more resources

Background: Apolipoprotein E (apoE) has been shown to play a pivotal role in the development of cardiovascular disease, attributable to its function in lipid trafficking and immune modulating properties; however, its role in modulating inflammation in the setting of acute lung injury (ALI) is unknown. Objective: To determine whether apoE-deficient mice (apoE-/-) are more susceptible to ALI compared to wild-type (WT) animals. Methods: Two independent models of ALI were employed. Firstly, WT and apoE-/- mice were randomized to acid aspiration (50 mu l of 0.1 N hydrochloric acid) followed by 4 h of mechanical ventilation. Secondly, WT and apoE-/- mice were randomized to 72 h of hyperoxia exposure or room air. Thereafter, the intrinsic responses of WT and apoE-/- mice were assessed using the isolated perfused mouse lung (IPML) setup. Finally, based on elevated levels of oxidized low-density lipoprotein (oxLDL) in apoE-/-, the effect of oxLDL on lung endothelial permeability and inflammation was assessed. Results: In both in vivo models, apoE-/- mice demonstrated greater increases in lung lavage protein levels, neutrophil counts, and cytokine expression (p < 0.05) compared to WT mice. Experiments utilizing the IPML setup demonstrated no differences in intrinsic lung responses to injury between apoE-/- and WT mice, suggesting the presence of a circulating factor as being responsible for the in vivo observations. Finally, the exposure of lung endothelial cells to oxLDL resulted in increased monolayer permeability and IL-6 release compared to native (nonoxidized) LDL. Conclusions: Our findings demonstrate a susceptibility of apoE-/- animals to ALI that may occur, in part, due to elevated levels of oxLDL. (C) 2014 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available