4.3 Article

Efficient binding of nickel ions to recombinant Bacillus subtilis spores

Journal

RESEARCH IN MICROBIOLOGY
Volume 161, Issue 9, Pages 757-764

Publisher

ELSEVIER
DOI: 10.1016/j.resmic.2010.07.008

Keywords

Bioremediation; Biosorption; Heavy metals

Categories

Funding

  1. Ministry of Science, Research and Technology, Iran [232]
  2. EU [KBBE-2007-207948]

Ask authors/readers for more resources

We report the use of recombinant spores of Bacillus subtilis as a potential bioremediation tool for adsorption of nickel ions. The spore surface protein CotB, previously used for the display of heterologous antigens, was engineered to express eighteen histidine residues within the spore coat. Wild type and recombinant spores were then analyzed to assess their efficiency in adsorbing nickel ions, and the latter proved to be significantly more efficient than wild type spores in metal-binding. The quantities of spores used in the adsorption reaction significantly affected nickel binding, while other factors such as pH and temperature did not show relevant effects. In addition, simple washing procedures were used to partially release spore-bound nickel ions by wild type and recombinant spores. The efficiency of nickel binding, together with the simple purification procedure, the high robustness and safety of B. subtilis spores and the possibility of recovering bound nickel, makes the recombinant spore a new and potentially powerful tool for the treatment of contaminated ecosystems. (C) 2010 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available