4.6 Article Proceedings Paper

Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes

Journal

REPRODUCTIVE BIOMEDICINE ONLINE
Volume 16, Issue 1, Pages 103-112

Publisher

REPRODUCTIVE HEALTHCARE LTD
DOI: 10.1016/S1472-6483(10)60562-7

Keywords

ageing; aneuploidy; cohesin; meiosis; mouse

Ask authors/readers for more resources

Aneuploidy often results from chromosome misalignment at metaphases. Oocytes from senescence-accelerated mice (SAM) exhibit increased chromosome misalignment with age, which originates from nuclear factors. This work sought to further characterize the underlying defects of chromosome misalignments. Using immunofiuorescence microscopy with specific antibodies, several specific components associated with spindles or chromosomes, including centrosomes, centromeres and cohesin complex were examined. No obvious differences were found in the distribution of centrosome focus at the spindle pole of oocytes from young and aged SAM, regardless of chromosome alignments, although cytoplasmic centrosome foci were significantly reduced in aged SAM (P < 0.0001). Oocytes from both young and aged SAM exhibited centromere-associated protein-E (CENP-E) at centromeres of all chromosomes, including misaligned chromosomes from aged SAM, demonstrating that CENP-E did not contribute to chromosome misalignments. Notably, both meiotic cohesin proteins located between sister chromatids, REC8 (recombinant 8), STAG3 (stromal antigen 3) and SMC1 beta, were remarkably reduced in oocytes from aged SAM. Further, degradation of the cohesin was even more obvious in SAM than in hybrid F1 mice with age, which may explain why SAM are vulnerable to aneuploidy. This natural ageing mouse model shows that defective cohesin coincides with increased incidence of chromosome misalignment and precocious separations of sister chromatids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available