4.5 Article

SUMO1 in human sperm: new targets, role in motility and morphology and relationship with DNA damage

Journal

REPRODUCTION
Volume 148, Issue 5, Pages 453-467

Publisher

BIOSCIENTIFICA LTD
DOI: 10.1530/REP-14-0173

Keywords

-

Funding

  1. Italian Ministry of University and Scientific Research
  2. Regione Toscana

Ask authors/readers for more resources

In studies carried out previously, we demonstrated that small ubiquitin-like modifier 1 (SUMO1) is associated with poor sperm motility when evaluated with a protocol that reveals mostly SUMO1-ylated live sperm. Recently, with another protocol, it has been demonstrated that SUMO is expressed in most sperm and is related to poor morphology and motility, suggesting that sumoylation may have multiple roles depending on its localisation and targets. We show herein, by confocal microscopy and co-immunoprecipitation, that dynaminrelated protein 1 (DRP1), Ran GTPase-activating protein 1 (RanGAP1) and Topoisomerase II alpha, SUMO1 targets in somatic and/or germ cells, are SUMO1-ylated in mature human spermatozoa. DRP1 co-localises with SUMO1 in the mid-piece, whereas RanGAP1 and Topoisomerase II alpha in the post-acrosomal region of the head. Both SUMO1 expression and co-localisation with the three proteins were significantly higher in morphologically abnormal sperm, suggesting that sumoylation represents a marker of defective sperm. DRP1 sumoylation at the mid-piece level was higher in the sperm of asthenospermic men. As in somatic cells, DRP1 sumoylation is associated with mitochondrial alterations, this protein may represent the link between SUMO and poor motility. As SUMO pathways are involved in responses to DNA damage, another aim of our study was to investigate the relationship between sumoylation and sperm DNA fragmentation (SDF). By flow cytometry, we demonstrated that SUMO1-ylation and SDF are correlated (r=0.4, P<0.02, n=37) and most sumoylated sperm shows DNA damage in co-localisation analysis. When SDF was induced by stressful conditions (freezing and thawing and oxidative stress), SUMO1-ylation increased. Following freezing and thawing, SUMO1-Topoisomerase IIa co-localisation and co-immunoprecipitation increased, suggesting an involvement in the formation/repair of DNA breakage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available