4.7 Article

Generic ground response functions for ground exchangers in the presence of groundwater flow

Journal

RENEWABLE ENERGY
Volume 72, Issue -, Pages 354-366

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2014.07.026

Keywords

Vertical ground heat exchanger; Geothermal; Groundwater; Ground response functions

Funding

  1. Fonds de recherche du Quebec - Nature et Technologie (FRQNT)

Ask authors/readers for more resources

This paper describes a procedure for computing time-dependent ground response functions (G) of vertical ground exchangers in the presence of groundwater flow. The comprehensive methodology can account for multi-borehole fields and allows predicting accurately heat transfer over a large range of design parameters, ground properties and time scales. It combines two analytical models: infinite cylinder source (ICS) and moving finite line source (MFLS). A new mathematical development is introduced to enhance the computational efficiency of the G-functions with the MFLS model. The precision of the models as a function of time is verified with finite-element modeling. An application-oriented procedure allows expressing the G-functions as a function of all the variables by combining graphical tools and correlation fittings. This procedure is developed specifically to be easily implemented in borehole design methods. The G-functions obtained by this method are in good agreement (R-2 = 0.9934) with the analytical solution developed, over the prescribed range of variables. (c) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available