4.7 Article

Analytical modelling of an U-Oscillating Water Column and performance in random waves

Journal

RENEWABLE ENERGY
Volume 60, Issue -, Pages 116-126

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2013.04.016

Keywords

Wave energy converter; OWC; REWEC; Analytical modelling; Monte Carlo simulation

Funding

  1. Italian Ministry of Environment
  2. Department 11 of the Regione Calabria

Ask authors/readers for more resources

The oscillating water column (OWC) technology is recognized as one of the most effective solutions for exploiting sea wave energy in a scenario including hundreds of promising devices. In this context, the novel U-OWC device has been recently introduced as a further development of the OWC. This device differs from the conventional OWC as it utilizes a small vertical U-duct for connecting the air pocket to the open wave field. The objective of this paper is to propose a consistent representation of the wave field interacting with the U-OWC in the context of a linearized theory of water waves and, then, an analytical description of the U-OWC dynamics. Such a representation overcomes the drawbacks of the analytical models proposed, at the present time, in the open literature. Moreover, it allows including memory effects previously neglected. Next, the performance of the U-OWC is investigated by Monte Carlo simulations. In this regard, several simulations are produced for testing the efficiency of the device in sea waves compatible with power spectral density of wind-generated waves and of swells. The efficiency is evaluated according to a number of parameters, that allow highlighting the remarkable amount of energy absorbed by the system. The influence of the turbine is investigated, as well, by comparing the performance of monoplane (with and without guide vanes), biplane and contra-rotating turbines. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available