4.7 Article

Condition based maintenance optimization for wind power generation systems under continuous monitoring

Journal

RENEWABLE ENERGY
Volume 36, Issue 5, Pages 1502-1509

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2010.10.028

Keywords

Condition based maintenance; Wind turbine; Optimization; Simulation; Preventive maintenance; Artificial neural network

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Le Fonds quebecois de la recherche sur la nature et les technologies (FQRNT)

Ask authors/readers for more resources

By utilizing condition monitoring information collected from wind turbine components, condition based maintenance (CBM) strategy can be used to reduce the operation and maintenance costs of wind power generation systems. The existing CBM methods for wind power generation systems deal with wind turbine components separately, that is, maintenance decisions are made on individual components, rather than the whole system. However, a wind farm generally consists of multiple wind turbines, and each wind turbine has multiple components including main bearing, gearbox, generator, etc. There are economic dependencies among wind turbines and their components. That is, once a maintenance team is sent to the wind farm, it may be more economical to take the opportunity to maintain multiple turbines, and when a turbine is stopped for maintenance, it may be more cost-effective to simultaneously replace multiple components which show relatively high risks. In this paper, we develop an optimal CBM solution to the above-mentioned issues. The proposed maintenance policy is defined by two failure probability threshold values at the wind turbine level. Based on the condition monitoring and prognostics information, the failure probability values at the component and the turbine levels can be calculated, and the optimal CBM decisions can be made accordingly. A simulation method is developed to evaluate the cost of the CBM policy. A numerical example is provided to illustrate the proposed CBM approach. A comparative study based on commonly used constant-interval maintenance policy demonstrates the advantage of the proposed CBM approach in reducing the maintenance cost. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available