4.7 Article

Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran

Journal

RENEWABLE ENERGY
Volume 34, Issue 7, Pages 1855-1862

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2008.11.022

Keywords

Wind turbine; Fuel cell; Hybrid power system; Renewable energy; Optimal sizing; Particle swarm optimization

Ask authors/readers for more resources

In this paper a novel intelligent method is applied to the problem of sizing in a hybrid power system such that the demand of residential area is met. This study is performed for Kahnouj area in south-east Iran. It is to mention that there are many similar regions around the world with this typical situation that can be expanded. The system consists of fuel cells, some wind units, some electrolyzers, a reformer, an anaerobic reactor and some hydrogen tanks. The system is assumed to be stand-alone and uses the biomass as an available energy resource. In this system, the hydrogen produced by the reformer is delivered to the fuel cell directly. When the power produced by the wind turbine plus power produced by the fuel cell (fed by the reformer) are more than the demand, the remainder is delivered to the electrolyzer. In contrast, when the power produced by the wind turbine plus that produced by the fuel cell (fed by the reformer) are less than the demand, some more fuel cells are employed and they are fed by the stored hydrogen. Our aim is to minimize the total costs of the system such that the demand is met. PSO algorithm is used for optimal sizing of system's components. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available