4.8 Review

Impacts of large-scale Intermittent Renewable Energy Sources on electricity systems, and how these can be modeled

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 33, Issue -, Pages 443-466

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2014.01.076

Keywords

Thermal power plants; Wind power; Power system modeling; Carbon capture and storage; Renewable energy

Funding

  1. Dutch government (Ministry of Economic Affairs)
  2. CATO-2 Consortium Parties

Ask authors/readers for more resources

The electricity sector in OECD countries is on the brink of a large shift towards low-carbon electricity generation. Power systems after 2030 may consist largely of two low-carbon generator types: Intermittent Renewable Energy Sources (IRES) such as wind and solar PV and thermal generators such as power plants with carbon capture. Combining these two types could lead to conflicts, because IRES require more flexibility from the power system, whereas thermal generators may be relatively inflexible. In this study, we quantify the impacts of large-scale IRES on the power system and its thermal generators, and we discuss how to accurately model IRES impacts on a low-carbon power system. Wind integration studies show that the impacts of wind power on present-day power systems are sizable at penetration rates of around 20% of annual power generation: the combined reserve size increases by 8.6% (6.3-10.8%) of installed wind capacity, and wind power provides 16% (5-27%) of its capacity as firm capacity. Thermal generators are affected by a reduction in their efficiency of 4% (0-9%), and displacement of (mainly natural gas-fired) generators with the highest marginal costs. Of these impacts, only the increase in reserves incurs direct costs of 1-6(sic)/MWh(wind). These results are also indicative of the impacts of solar PV and wave power. A comprehensive power system model will be required to model the impacts of IRES in a low-carbon power system, which accounts for: a time step of <1 h, detailed IRES production patterns, flexibility constraints of thermal generators and interconnection capacity. Ideally, an efficient reserve sizing methodology and novel flexibility technologies (i.e., high capacity interconnectors and electricity storage and DSM) will also be included. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available