4.8 Review

Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 39, Issue -, Pages 461-475

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2014.07.087

Keywords

Life cycle assessment; Greenhouse gases; Electricity generation; Heat generation; Renewable energy

Funding

  1. Scottish Government Rural and Environmental Science and Analytical Services Division (RESAS)

Ask authors/readers for more resources

Electricity and heat generation are key contributors to global emissions of greenhouse gases (GHG). In this paper, specific attention is paid to renewable energy technologies (RETs) for electricity and heat generation and reviews current understanding and estimates of life cycle GHG emissions from a range of renewable electricity and heat generation technologies. Comprehensive literature reviews for each RET were carried out. The 79 studies reviewed involved the life cycle assessment (LCA) of renewable electricity and heat generation based on onshore and offshore winds, hydropower, marine technologies (wave power and tidal energy), geothermal, photovoltaic (PV), solar thermal, biomass, waste, and heat pumps. The study demonstrates the variability of existing LCA studies (results) in tracking GHG emissions for electricity and heat generation from RETs. This review has shown that the lowest GHG emissions were associated with offshore wind technologies (mean life cycle GHG emissions could be 5.3-13 g CO2 eq/kWh). Results compared with GHG estimates by fossil fuel heat and electricity indicated that life cycle GHG emissions are comparatively higher in conventional sources as compared to renewable sources with the exception of nuclear-based power electricity generation. In this present study, considering renewable energy sources, waste treatment and dedicated biomass technologies (DBTs) were found to potentially have high GHG emissions based on the feedstock, selected boundary and the inputs required for their production. The study identifies additional impacts associated with renewable electricity and heat technologies, points out the effectiveness of life cycle analysis (LCA) as a tool for assessing environmental impacts of renewable energy sources and concludes with opportunities for improvement in the future. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available