4.8 Review

Renewable energy potential on marginal lands in the United States

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 29, Issue -, Pages 473-481

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2013.08.079

Keywords

Renewable energy; Renewable resources; Marginal lands

Funding

  1. U.S. Department of Energy's National Renewable Energy Laboratory
  2. University of Colorado-Boulder
  3. Colorado School of Mines
  4. Colorado State University
  5. Massachusetts Institute of Technology
  6. Stanford University

Ask authors/readers for more resources

This study identifies several marginal land categories suitable for renewable energy development, representing about 11% of U.S. mainland. The authors define marginal lands as areas with inherent disadvantages or lands that have been marginalized by natural and/or artificial forces. These lands are generally underused, difficult to cultivate, have low economic value, and varied developmental potential. The study finds that a significant potential exists for renewable energy development on these lands. Technologies assessed include utility-scale photovoltaics (PV), concentrating solar power (CSP), wind, hydrothermal geothermal, mini-hydro systems (low head/low power), biomass power, and landfill gas-to-energy. Solar technologies present the highest opportunity, followed by wind and biomass power. It is estimated that about 4.5 PWh of electricity could be produced from PV on marginal lands in the conterminous United States, 4 PWh from CSP, 2.7 PWh from wind, 1.9 PWh from biomass, 11 TWh from mini-hydropower systems, 8.8 TWh from hydrothermal geothermal, and 7.3 TWh from landfill gas. While it is possible for some technologies to be co-located, it is more likely that only one will be deployed in a given area. Thus, it is most reasonable to view the potential for different technologies separately. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available