4.8 Review

A new strategy for predicting short-term wind speed using soft computing models

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 16, Issue 7, Pages 4563-4573

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2012.05.042

Keywords

Adaptive neuro-fuzzy inference system; Short-term wind speed forecasting; Backpropagation neural network; Radial basis function neural network; Similar days

Ask authors/readers for more resources

Wind power prediction is a widely used tool for the large-scale integration of intermittent wind-powered generators into power systems. Given the cubic relationship between wind speed and wind power, accurate forecasting of wind speed is imperative for the estimation of future wind power generation output. This paper presents a performance analysis of short-term wind speed prediction techniques based on soft computing models (SCMs) formulated on a backpropagation neural network (BPNN), a radial basis function neural network (RBFNN), and an adaptive neuro-fuzzy inference system (ANFIS). The forecasting performance of the SCMs is augmented by a similar days (SD) method, which considers similar historical weather information corresponding to the forecasting day in order to determine similar wind speed days for processing. The test results demonstrate that all evaluated SCMs incur some level of performance improvement with the addition of SD pre-processing. As an example, the SD+ANFIS model can provide up to 48% improvement in forecasting accuracy when compared to the individual ANFIS model alone. (c) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available