4.7 Article

Accuracy assessment of NLCD 2006 land cover and impervious surface

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 130, Issue -, Pages 294-304

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2012.12.001

Keywords

Impervious surface accuracy assessment; Forest loss; Land-cover change accuracy assessment; MRLC; Stratified sampling; Urbanization; United States

Funding

  1. United States Geological Survey (USGS)
  2. United States Environmental Protection Agency through its Office of Research and Development
  3. USGS [G12AC20221]

Ask authors/readers for more resources

Release of NLCD 2006 provides the first wall-to-wall land-cover change database for the conterminous United States from Landsat Thematic Mapper (TM) data. Accuracy assessment of NLCD 2006 focused on four primary products: 2001 land cover, 2006 land cover, land-cover change between 2001 and 2006, and impervious surface change between 2001 and 2006. The accuracy assessment was conducted by selecting a stratified random sample of pixels with the reference classification interpreted from multi-temporal high resolution digital imagery. The NLCD Level II (16 classes) overall accuracies for the 2001 and 2006 land cover were 79% and 78%, respectively, with Level II user's accuracies exceeding 80% for water, high density urban, all upland forest classes, shrubland, and cropland for both dates. Level I (8 classes) accuracies were 85% for NLCD 2001 and 84% for NLCD 2006. The high overall and user's accuracies for the individual dates translated into high user's accuracies for the 2001-2006 change reporting themes water gain and loss, forest loss, urban gain, and the no-change reporting themes for water, urban, forest and agriculture. The main factor limiting higher accuracies for the change reporting themes appeared to be difficulty in distinguishing the context of grass. We discuss the need for more research on land-cover change accuracy assessment Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available