4.7 Article

Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 115, Issue 12, Pages 3517-3529

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2011.08.014

Keywords

Snow; Snow water equivalent; Northern hemisphere; Radiometer

Ask authors/readers for more resources

The key variable describing global seasonal snow cover is snow water equivalent (SWE). However, reliable information on the hemispheric scale variability of SWE is lacking because traditional methods such as interpolation of ground-based measurements and stand-alone algorithms applied to space-borne observations are highly uncertain with respect to the spatial distribution of snow mass and its evolution. In this paper, an algorithm assimilating synoptic weather station data on snow depth with satellite passive microwave radiometer data is applied to produce a 30-year-long time-series of seasonal SWE for the northern hemisphere. This data set is validated using independent SWE reference data from Russia, the former Soviet Union, Finland and Canada. The validation of SWE time-series indicates overall strong retrieval performance with root mean square errors below 40 mm for cases when SWE <150 mm. Retrieval uncertainty increases when SWE is above this threshold. The SWE estimates are also compared with results obtained by a typical stand-alone satellite passive microwave algorithm. This comparison demonstrates the benefits of the newly developed assimilation approach. Additionally, the trends and inter-annual variability of northern hemisphere snow mass during the era of satellite passive microwave measurements are shown. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available