4.7 Article

Combining vegetation indices, constrained ordination and fuzzy classification for mapping semi-natural vegetation units from hyperspectral imagery

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 114, Issue 6, Pages 1155-1166

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2010.01.003

Keywords

Cluster analysis; Redundancy analysis; Multivariate; Supervised fuzzy c-means; Semiarid; Rangeland; Namibia; Imaging spectroscopy

Funding

  1. Helmholtz-EOS PhD Programme

Ask authors/readers for more resources

Vegetation mapping of plant communities at fine spatial scales is increasingly supported by remote sensing technology. However, combining ecological ground truth information and remote sensing datasets for mapping approaches is complicated by the complexity of ecological datasets. In this study, we present a new approach that uses high spatial resolution hyperspectral datasets to map vegetation units of a semiarid rangeland in Central Namibia. Field vegetation surveys provide the input to the workflow presented in this study. The collected data were classified by hierarchical cluster analysis into seven vegetation units that reflect different ecological states occurring in the study area. Spectral indices covering vegetation and soil characteristics were calculated from hyperspectral remote sensing imagery and used as environmental variables in a constrained ordination by applying redundancy analysis (RDA). The resulting statistical relationships between vegetation data and spectral indices were transferred into images of ordination axes, which were subsequently used in a supervised fuzzy c-means classification approach relying on a k-NN distance metric. Membership images for each vegetation unit as well as a confusion image of the classification result allowed a sound ecological interpretation of the resulting hard classification map. Classification results were validated with two independent reference datasets. For an internal and external validation dataset, overall accuracy reached 98% and 64% with kappa values of 0.98 and 0.53, respectively. Critical steps during the mapping workflow were highlighted and compared with similar mapping approaches. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available