4.7 Article

Aircraft based soil moisture retrievals under mixed vegetation and topographic conditions

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 112, Issue 2, Pages 375-390

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2007.01.024

Keywords

soil moisture; microwave; AMSR-E; hydrology

Ask authors/readers for more resources

An unresolved issue in global soil moisture retrieval using passive microwave sensors is the spatial integration of heterogeneous landscape features to the nominal 50 km footprint observed by most low frequency satellite systems. One of the objectives of the Soil Moisture Experiments 2004 (SMEX04) was to address some aspects of this problem, specifically variability introduced by vegetation, topography and convective precipitation. Other goals included supporting the development of soil moisture data sets that would contribute to understanding the role of the land surface in the concurrent North American Monsoon System. SMEX04 was conducted over two regions: Arizona - semi-arid climate with sparse vegetation and moderate topography, and Sonora (Mexico) - moderate vegetation with strong topographic gradients. The Polarimetric Scanning Radiometer (PSR/CX) was flown on a Naval Research Lab P-3B aircraft as part of SMEX04 (10 dates of coverage over Arizona and 11 over Sonora). Radio Frequency Interference (RFI) was observed in both PSR and satellite-based (AMSR-E) observations at 6.92 GHz over Arizona, but no detectable RFI was observed over the Sonora domain. The PSR estimated soil moisture was in agreement with the ground-based estimates of soil moisture over both domains. The estimated error over the Sonora domain (SEE=0.021 cm(3)/cm(3)) was higher than over the Arizona domain (SEE=0.014 cm(3)/cm(3)). These results show the possibility of estimating soil moisture in areas of moderate and heterogeneous vegetation and high topographic variability. (C) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available