3.9 Article

Human adrenomedullin combined with human adrenomedullin binding protein-1 is protective in gut ischemia and reperfusion injury in the rat

Journal

REGULATORY PEPTIDES
Volume 152, Issue 1-3, Pages 82-87

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.regpep.2008.09.007

Keywords

Human adrenomedullin; Human adrenomedullin binding protein-1; Intestinal ischemia; Reperfusion

Funding

  1. National Institutes of Health

Ask authors/readers for more resources

Previous studies have demonstrated that co-administration of rat adrenomedullin (AM) and human AM binding protein-1 (AMBP-1) has various beneficial effects following adverse circulatory conditions. In order to reduce rat proteins to elicit possible immune responses in humans, we determined the effect of human AM combined with human AMBP-1 after intestinal ischemia and reperfusion (I/R). Intestinal ischemia was induced in the rat by occluding the superior mesenteric artery for 90 min. At 60 min after the beginning of reperfusion, human AM/AMBP-1 at 3 different dosages was administered intravenously over 30 min. At 240 min after the treatment, blood and tissue samples were harvested and measured for pro-inflammatory cytokines (i.e.. TNF-alpha and IL-6), myeloperoxidase activities in the gut and lungs, and cleaved caspase-3 expression in the lungs, as well as serum levels of hepatic enzymes and lactate. In additional groups of animals, a 10-day survival study was conducted. Results showed that administration of human AM/AMBP-1 reduced pro-inflammatory cytokines, attenuated organ injury, and improved the survival rate in a seemingly dose-response fashion. Co-administration of the highest dose of human AM/AMBP-1 in this study had the optimal therapeutic effect in the rat model of intestinal I/R (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available