4.7 Article

Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu(II), Co(II), and Ni(II) ions

Journal

REACTIVE & FUNCTIONAL POLYMERS
Volume 70, Issue 4, Pages 257-266

Publisher

ELSEVIER
DOI: 10.1016/j.reactfunctpolym.2010.01.002

Keywords

Chitosan; Schiff's base; Diacetylmonoxime; Magnetic resin

Ask authors/readers for more resources

Cross-linked magnetic chitosan-diacetylmonoxime Schiff's base resin (CSMO) was prepared for adsorption of metal ions. CSMO obtained was investigated by means of scanning electron microscope (SEM), FTIR, H-1 NMR, wide-angle X-ray diffraction (WAXRD), magnetic properties and thermogravimetric analysis (TGA). The adsorption properties of cross-linked magnetic CSMO resin toward Cu2+. Co2+ and Ni2+ ions were evaluated. Various factors affecting the uptake behavior such as contact time, temperature, pH and initial concentration of the metal ions were investigated. The kinetics was evaluated utilizing the pseudo-first-order and pseudo-second-order. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 95 +/- 4, 60 +/- 1.5, and 47 +/- 1.5 mg/g for Cu2+, Co2+ and Ni2+ ions, respectively. Cross-linked magnetic CSMO displayed higher adsorption capacity for Cu2+ in all pH ranges studied. The adsorption capacity of the metal ions decreased with increasing temperature. The metal ion-loaded cross-linked magnetic CSMO were regenerated with an efficiency of greater than 84% using 0.01-0.1 M ethylendiamine tetraacetic acid (EDTA). (c) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available