4.4 Article

Calcined bone provides a reliable substrate for strontium isotope ratios as shown by an enrichment experiment

Journal

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
Volume 29, Issue 1, Pages 107-114

Publisher

WILEY-BLACKWELL
DOI: 10.1002/rcm.7078

Keywords

-

Funding

  1. Wiener-Anspach Foundation
  2. British Academy [SG130690]
  3. Sigma Xi [G20120315161475]

Ask authors/readers for more resources

RATIONALEStrontium isotopes (Sr-87/Sr-86) are used in archaeological and forensic science as markers of residence or mobility because they reflect the local geological substrate. Currently, tooth enamel is considered to be the most reliable tissue, but it rarely survives heating so that in cremations only calcined bone fragments survive. We set out to test the proposition that calcined bone might prove resistant to diagenesis, given its relatively high crystallinity, as the ability to measure in vivo(87)Sr/Sr-86 from calcined bone would greatly extend application to places and periods in which cremation was the dominant mortuary practice, or where unburned bone and enamel do not survive. METHODSTooth enamel and calcined bone samples were exposed to a Sr-87-spiked solution for up to 1year. Samples were removed after various intervals, and attempts were made to remove the contamination using acetic acid washes and ultrasonication. Sr-87/Sr-86 was measured before and after pre-treatment on a Nu Plasma multi-collector induced coupled plasma mass spectrometer using NBS987 as a standard. RESULTSThe strontium isotopic ratios of all samples immersed in the spiked solution were strongly modified showing that significant amounts of strontium had been adsorbed or incorporated. After pre-treatment the enamel samples still contained significant amounts of Sr-87-enriched contamination while the calcined bone fragments did not. CONCLUSIONSThe results of the artificial enrichment experiment demonstrate that calcined bone is more resistant to post-mortem exchange than tooth enamel, and that in vivo strontium isotopic ratios are retained in calcined bone. Copyright (c) 2014 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available