4.4 Article

Evaluation of direct analysis in real time mass spectrometry for onsite monitoring of batch slurry reactions

Journal

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
Volume 25, Issue 23, Pages 3575-3580

Publisher

WILEY-BLACKWELL
DOI: 10.1002/rcm.5269

Keywords

-

Funding

  1. National Science Foundation [CHE 0750364]
  2. University of Tennessee

Ask authors/readers for more resources

Batch slurry reactions are widely used in the industrial manufacturing of chemicals, pharmaceuticals, petrochemicals and polymers. However, onsite monitoring of batch slurry reactions is still not feasible in production plants due to the challenge in analyzing heterogeneous samples without complicated sample preparation procedures. In this study, direct analysis in real time mass spectrometry (DART-MS) has been evaluated for the onsite monitoring of a model batch slurry reaction. The results suggested that automation of the sampling process of DART-MS is important to achieve quantitative results. With a sampling technique of manual sample deposition on melting point capillaries followed by automatic sample introduction across the helium beam, relative standard deviation (RSD) of the protonated molecule signals from the reaction product of the model batch slurry reaction ranged from 6 to 30%. This RSD range is improved greatly over a sampling technique of manual sample deposition followed by manual sample introduction where the RSDs are up to 110%. Furthermore, with the semi-automated sampling approach, semi-quantitative analysis of slurry samples has been achieved. Better quantification is expected with a fully automated sampling approach. Copyright (C) 2011 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available