4.4 Article

Evaluation of the LTQ-Orbitrap mass spectrometer for the analysis of polymerase chain reaction products

Journal

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
Volume 24, Issue 24, Pages 3501-3509

Publisher

WILEY
DOI: 10.1002/rcm.4800

Keywords

-

Ask authors/readers for more resources

We have investigated the potential and robustness of the off-line coupling of polymerase chain reaction (PCR) with electrospray ionization mass spectrometry (ESI-MS), for further applications in the screening of single-nucleotide polymorphisms (SNPs). This was based on recently reported data demonstrating that anion-exchange solid-phase extraction was the most efficient technique for efficiently desalting PCR products, with a recovery of similar to 70%. Results showed that this purification approach efficiently removes almost all the chemicals commonly added to PCR buffers. ESI-MS analysis of a model 114-bp PCR product performed on the LTQ-Orbitrap instrument demonstrated that detection limits in the nM range along with an average mass measurement uncertainty of 9.15 +/- 7.11ppm can be routinely obtained using an external calibration. The PCR/ESI-MS platform was able to detect just a few copies of a targeted oligonucleotide. However, it was shown that if two PCR products are present in a mixture in a ratio higher than 10 to 1, the lower abundance one might not be reproducibly detected. Applications to SNPs demonstrated that an LTQ-Orbitrap with a resolution of 30 000 (at m/z 400) easily identified a single (A <-> G) switch, i.e. a 16 Da difference, in binary mixtures of similar to 35 kDa PCR products. Complementary experiments also showed that the combination of endonucleases and ESI-MS could be used to confirm base composition and sequence, and thus to screen for unknown polymorphisms in specific sequences. For example, a single (T <-> A) switch (9 Da mass difference) was successfully identified in a 114-bp PCR product. Copyright (c) 2010 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available