4.4 Article

Comprehensive plasma-screening for known and unknown substances in doping controls

Journal

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
Volume 24, Issue 8, Pages 1124-1132

Publisher

WILEY
DOI: 10.1002/rcm.4492

Keywords

-

Funding

  1. Antidoping Switzerland, Bern, Switzerland
  2. Federal Ministry of the Interior of the Federal Republic of Germany
  3. Cyprus Anti-Doping Authority

Ask authors/readers for more resources

Occasionally, doping analysis has been recognized as a competitive challenge between cheating sportsmen and the analytical capabilities of testing laboratories. Both have made immense progress during the last decades, but obviously the athletes have the questionable benefit of frequently being able to switch to new, unknown and untested compounds to enhance their performance. Thus, as analytical counteraction and for effective drug testing, a complementary approach to classical targeted methods is required in order to implement a comprehensive screening procedure for known and unknown xenobiotics. The present study provides a new analytical strategy to circumvent the targeted character of classical doping controls without losing the required sensitivity and specificity. Using 50 mu L of plasma only, the method potentially identifies illicit drugs in low ng/mL concentrations. Plasma provides the biological fluid with the circulating, unmodified xenobiotics; thus the identification of unknown compounds is facilitated. After a simple protein precipitation, liquid chromatographic separation and subsequent detection by means of high resolution/high accuracy orbitrap mass spectrometry, the procedure enables the determination of numerous compounds from different classes prohibited by the World Anti-Doping Agency (WADA). A new hyphenated mass spectrometry technology was employed without precursor ion selection for higher collision energy dissociation (HCD) fragmentation experiments. Thus the mass spectra contained all the desired information to identify unknown substances retrospectively. The method was validated for 32 selected model compounds for qualitative purposes considering the parameters specificity, selectivity, limit of detection (<0.1-10 ng/mL), precision (9-28%), robustness, linearity, ion suppression and recovery (80-112%). In addition to the identification of unknown compounds, the plasma samples were simultaneously screened for known prohibited targets. Copyright (C) 2010 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available