4.4 Article

Rapid detection and characterization of reactive drug metabolites in vitro using several isotope-labeled trapping agents and ultra-performance liquid chromatography/time-of-flight mass spectrometry

Journal

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
Volume 23, Issue 6, Pages 843-855

Publisher

WILEY
DOI: 10.1002/rcm.3953

Keywords

-

Funding

  1. Finnish Funding Agency for Technology and Innovation (TEKES)

Ask authors/readers for more resources

Reactive metabolites are believed to be one of the main reasons for unexpected drug-induced toxicity issues, by forming covalent adducts with cell proteins or DNA. Due to their high reactivity and short lifespan they are not directly detected by traditional analytical methods, but are most traditionally analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) after chemical trapping with nucleophilic agents such as glutathione. Here, a simple but very efficient assay was built up for screening reactive drug metabolites, utilizing stable isotope labeled glutathione, potassium cyanide and semicarbazide as trapping agents and highly sensitive ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC/TOFMS) as an analytical tool. A group of twelve structurally different compounds was used as a test set, and a large number of trapped metabolites were detected for most of them, including many conjugates not reported previously. Glutathione-trapped metabolites were detected for nine of the twelve test compounds, whereas cyanide-trapped metabolites were found for eight and semicarbazide-trapped for three test compounds. The high mass accuracy of TOFMS provided unambiguous identification of change in molecular formula by formation of a reactive metabolite. In addition, use of a mass defect filter was found to be a usable tool when mining the trapped conjugates from the acquired data. The approach was shown to provide superior detection sensitivity in comparison to traditional methods based on neutral loss or precursor ion scanning with a triple quadrupole mass spectrometer, and clearly more efficient detection and characterization of reactive drug metabolites with a simpler test setup. Copyright (C) 2009 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available