4.7 Article

Use of 64Cu-labeled Fibronectin Domain with EGFR-Overexpressing Tumor Xenograft: Molecular Imaging

Journal

RADIOLOGY
Volume 263, Issue 1, Pages 179-188

Publisher

RADIOLOGICAL SOC NORTH AMERICA
DOI: 10.1148/radiol.12111504

Keywords

-

Funding

  1. Canary Foundation
  2. American Cancer Society
  3. National Institutes of Health [CA119367, CA136465, CA083636]
  4. Bayer Schering
  5. Doris Duke Distinguished Clinical
  6. General Electric
  7. Schering-Plough Biopharma

Ask authors/readers for more resources

Purpose: To assess the ability of an engineered epidermal growth factor receptor (EGFR)-binding fibronectin domain to serve as a positron emission tomographic (PET) probe for molecular imaging of EGFR in a xenograft mouse model. Materials and Methods: An EGFR-binding fibronectin domain (fibronectin abbreviated to Fn when bound) was site-specifically labeled with copper 64 (Cu-64) (8 MBq/nmol). Copper 64-Fn binding was tested in cell cultures with varying EGFR expression. Stability in human and mouse serum was measured in vitro. Animal experiments were approved by the Stanford University Institutional Animal Care and Use Committee. Copper 64-Fn (approximately 2 MBq) was used for PET in mice (n = 5) bearing EGFR-overexpressing xenografted tumors (approximately 5-10 mm in diameter). Results of tomography were compared with those of ex vivo gamma counting of dissected tissues. Statistical analysis was performed with t tests and adjustment for multiple comparisons. Results: Copper 64-Fn exhibited EGFR-dependent binding to multiple cell lines in culture. The tracer was stable for 24 hours in human and mouse serum at 37 degrees C. The tracer exhibited good tumor localization (3.4% injected dose [ ID]/g +/- 1.0 [standard deviation] at 1 hour), retention (2.7% ID/g +/- 0.6 at 24 hours), and specificity (8.6 +/- 3.0 tumor-to-muscle ratio, 8.9 +/- 4.7 tumor-to-blood ratio at 1 hour). Specific targeting was verified with low localization to low-expressing MDA-MB-435 tumors (0.7% ID/g +/- 0.8 at 1 hour, P = .018); specificity was further demonstrated, as a nonbinding control fibronectin had low localization to EGFR-overexpressing xenografts (0.8% ID/g +/- 0.2 at 1 hour, P = .013). Conclusion: The stability, low background, and target-specific tumor uptake and retention of the engineered fibronectin domain make it a promising EGFR molecular imaging agent. More broadly, it validates the fibronectin domain as a potential scaffold for a generation of various molecular imaging agents. (C) RSNA, 2012

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available