4.2 Article

VISUAL AND NUMERICAL METHODS TO MEASURE PATIENT SKIN DOSES IN INTERVENTIONAL PROCEDURES USING RADIOCHROMIC XR-RV2 FILMS

Journal

RADIATION PROTECTION DOSIMETRY
Volume 147, Issue 1-2, Pages 94-98

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/rpd/ncr281

Keywords

-

Funding

  1. Ministry of Science and Innovation [SAF2009-10485]

Ask authors/readers for more resources

Radiochromic XR-RV2 films are considered as one of the best dosemeters to measure patient skin doses in fluoroscopy-guided interventional procedures. To fulfil this purpose, they need to be calibrated with diagnostic energies and doses beyond several Gray. The vendor provides a visual calibration strip to estimate the absorbed dose. Differences between visual dose estimation versus film digitisation were investigated. The influence of backscatter radiation on film sensitivity was also investigated and the sources of uncertainty were analysed when skin doses were measured with these films. When based on the visual comparison with the strip, the estimation of the dose resulted in an error of 50 % (2 Gy in the region around 4 Gy). However, when using numerical methods after film digitisation, the uncertainty in dose measurement fell to 7-14 % in the dose range of interest. Calibration under backscatter conditions demonstrates that the 'in air' calibration underestimates the doses by 7 %. When the dose was measured with a calibration method based on 16 bits grey digitisation, uncertainty was twice higher than when the red channel from red, green, blue digitised images was used.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available