4.7 Article

Using silicon isotopes to understand the role of the Southern Ocean in modern and ancient biogeochemistry and climate

Journal

QUATERNARY SCIENCE REVIEWS
Volume 89, Issue -, Pages 13-26

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.quascirev.2014.01.019

Keywords

Silicon isotope; Silicic acid; Opal; Diatom

Funding

  1. Royal Society
  2. Climate Change Consortium of Wales
  3. Natural Environment Research Council
  4. Leverhulme Trust
  5. US National Science Foundation
  6. NERC [NE/J00474X/1, NE/J00474X/2] Funding Source: UKRI
  7. Natural Environment Research Council [NE/J00474X/1, NE/J00474X/2] Funding Source: researchfish

Ask authors/readers for more resources

The growth of siliceous phytoplankton, mainly diatoms, in the Southern Ocean influences the preformed nutrient inventory in the ocean on a global scale. Silicic acid use by diatoms and deep circulation combine to trap dissolved Si in the Southern Ocean resulting in high levels of silica production and expansive diatom oozes in Southern Ocean sediments. The analysis of the silicon isotope composition of biogenic silica, or opal, and dissolved silicic acid provide insight into the operation of the global marine silicon cycle and the role played by the Southern Ocean in nutrient supply and carbon drawdown, both in the modern and in the past. Silicon isotope studies of diatoms have provided insight into the history of silica production in surface waters, while the analysis of spicules from deep sea sponges has defined both the spatial and the temporal variability of silicic acid concentrations in the water column; together these and other proxies reveal variations in the northward flow of Southern Ocean intermediate and mode waters and how changes in Southern Ocean productivity altered their preformed nutrient content. We present a new hypothesis the Silicic Acid Ventilation Hypothesis (SAVH) to explain the geographical variation of opal-based proxy records, in particular the contrasting patterns of opal burial change found in the low and high latitudes. By understanding the silicon isotope systematics of opal and silicic acid in the modern, we will be able to use opal-based proxies to reconstruct past changes in the Southern Ocean and so investigate its role in global carbon cycling and climate. (c) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available