4.7 Article

Deconstructing the Last Glacial termination: the role of millennial and orbital-scale forcings

Journal

QUATERNARY SCIENCE REVIEWS
Volume 30, Issue 9-10, Pages 1155-1172

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.quascirev.2011.02.005

Keywords

Last Glacial termination; Heinrich event 1; Bolling warming; Older Dryas; Antarctic Cold Reversal; Younger Dryas; MWP-1A; Earth system model of intermediate; complexity

Funding

  1. NSF [1010869]
  2. Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
  3. NASA
  4. NOAA
  5. Belgian Science Policy [SD/CS/01A]

Ask authors/readers for more resources

Using an Earth system model of intermediate complexity forced by continuously varying boundary conditions and a hypothetical profile of freshwater forcing, the model simulates Heinrich event 1 (HI), the Bolling warm period, the Older Dryas, the Antarctic Cold Reversal (ACR) and the Younger Dryas in close agreement with paleo-proxy data from different regions worldwide. The ACR can be simulated as the bipolar seesaw response to the AMOC recovery during the termination of H1. However, this study also demonstrates that the amplitude of the ACR can be further amplified by a rapid deglacial retreat of the Antarctic Ice sheets. We suggest that melting from both, the Laurentide and the Antarctic Ice sheets contributed to the sea level rise associated with Meltwater Pulse 1-A (MWP-1A). It is hypothesized that the northern hemispheric source of MWP-1A caused the Older Dryas cooling in the Northern Hemisphere, whereas the Southern Hemispheric source contributed to the ACR. The study also documents that for the majority of paleo-climate proxies considered here, the relative timing can be qualitatively reproduced by the transient modeling experiments. The climate model solution presented here may provide a means to further constrain dating uncertainties of some of paleo-climate proxies during the Last Glacial Termination. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available