4.6 Article

Granular Computing Techniques for Classification and Semantic Characterization of Structured Data

Journal

COGNITIVE COMPUTATION
Volume 8, Issue 3, Pages 442-461

Publisher

SPRINGER
DOI: 10.1007/s12559-015-9369-1

Keywords

Granular computing; Automatic semantic interpretation; Frequent substructures miner; Graph matching; Graph classification; Evolutionary optimization; Watershed segmentation

Ask authors/readers for more resources

We propose a system able to synthesize automatically a classification model and a set of interpretable decision rules defined over a set of symbols, corresponding to frequent substructures of the input dataset. Given a preprocessing procedure which maps every input element into a fully labeled graph, the system solves the classification problem in the graph domain. The extracted rules are then able to characterize semantically the classes of the problem at hand. The structured data that we consider in this paper are images coming from classification datasets: they represent an effective proving ground for studying the ability of the system to extract interpretable classification rules. For this particular input domain, the preprocessing procedure is based on a flexible segmentation algorithm whose behavior is defined by a set of parameters. The core inference engine uses a parametric graph edit dissimilarity measure. A genetic algorithm is in charge of selecting suitable values for the parameters, in order to synthesize a classification model based on interpretable rules which maximize the generalization capability of the model. Decision rules are defined over a set of information granules in the graph domain, identified by a frequent substructures miner. We compare the system with two other state-of-the-art graph classifiers, evidencing both its main strengths and limits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available