4.2 Article

Identifying a reliable target fraction for radiocarbon dating sedimentary records from lakes

Journal

QUATERNARY GEOCHRONOLOGY
Volume 17, Issue -, Pages 68-80

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.quageo.2013.02.001

Keywords

Lake sediment; Radiocarbon; Pollen; Macrofossils; Old carbon

Funding

  1. Tertiary Education Commission Bright Futures TADS [UOOX0815]
  2. Australian Institute of Nuclear Science and Engineering PGRA [AINSTU0808]
  3. GNS Science Public Good Science Fund [C05X0907]
  4. University of Otago

Ask authors/readers for more resources

Lake basins that experience rapid rates of deposition act as high-resolution environmental archives because they produce sedimentary records that have centennial or even decadal resolution. However, identifying target fractions for radiocarbon dating of lake sediments remains problematic because reworked organic material from fluvial catchments can produce anomalously old radiocarbon ages. This study determines the extent to which reworked material from catchment soils impacts radiocarbon dates on pollen and other organic concentrates by comparing radiocarbon dates produced by these techniques against a chronostratigraphic marker in cores from Lake Mapourika, New Zealand. Pollen preferentially preserved and reworked from catchment soils was identified using soil palynology. A technique was then developed to remove reworked pollen types from pollen concentrates extracted from lake sediment. Identification and removal of reworked pollen from pollen concentrates produced ages that were consistently closer to the age of the chronostratigraphic horizon than other organic concentrates. However, these dates were still between 736 and 366 calendar years older than expected. The only organic fractions that reliably reproduced the age of the chronostratigraphic horizon were terrestrial leaf macrofossils, although terrestrial leaf macrofossils isolated from megaturbidite deposits, which are formed by high-energy depositional events, also provided anomalously old ages. The results indicate that leaf material extracted from hemipelagite, which accumulates gradually, is likely to be the only organic fraction to produce reliable chronology in lakes where a component of sedimentation is driven by the fluvial system. The results also demonstrate the importance of conducting a detailed investigation of physical sedimentology before selecting material for radiocarbon dating lake sediments. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available