4.4 Review

Rethinking Mutualism Stability: Cheaters and the Evolution of Sanctions

Journal

QUARTERLY REVIEW OF BIOLOGY
Volume 88, Issue 4, Pages 269-295

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/673757

Keywords

cheating; evolution of cooperation; mutualism coevolution; partner choice; partner fidelity feedback; sanctions

Categories

Funding

  1. NSERC
  2. Connaught New Researcher Award
  3. Ontario Ministry of Economic Development and Innovation Early Researcher Award
  4. University of Toronto

Ask authors/readers for more resources

How cooperation originates and persists in diverse species, from bacteria to multicellular organisms to human societies, is a major question in evolutionary biology. A large literature asks: what prevents selection for cheating within cooperative lineages? In mutualisms, or cooperative interactions between species, feedback between partners often aligns their fitness interests, such that cooperative symbionts receive more benefits from their hosts than uncooperative symbionts. But how do these feedbacks evolve? Cheaters might invade symbiont populations and select for hosts that preferentially reward or associate with cooperators (often termed sanctions or partner choice); hosts might adapt to variation in symbiont quality that does not amount to cheating (e.g., environmental variation); or conditional host responses might exist before cheaters do, making mutualisms stable from the outset. I review evidence from yucca-yucca moth, fig-fig wasp, and legume-rhizobium mutualisms, which are commonly cited as mutualisms stabilized by sanctions. Based on the empirical evidence, it is doubtful that cheaters select for host sanctions in these systems; cheaters are too uncommon. Recognizing that sanctions likely evolved for functions other than retaliation against cheaters offers many insights about mutualism coevolution, and about why mutualism evolves in only some lineages of potential hosts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available