4.6 Article

Cascades, backscatter and conservation in numerical models of two-dimensional turbulence

Journal

QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY
Volume 140, Issue 679, Pages 626-638

Publisher

WILEY
DOI: 10.1002/qj.2166

Keywords

backscatter; cascade

Funding

  1. Great Western Research
  2. Met Office

Ask authors/readers for more resources

The equations governing atmospheric flow imply transfers of energy and potential enstrophy between scales. Accurate simulation of turbulent flow requires that numerical models, which have finite resolution and truncation errors, adequately capture these interscale transfers, particularly between resolved and unresolved scales. It is therefore important to understand how accurately these transfers are modelled in the presence of scale-selective dissipation or other forms of subgrid model. Here, the energy and enstrophy cascades in numerical models of two-dimensional turbulence are investigated using the barotropic vorticity equation. Energy and enstrophy transfers in spectral space due to truncated scales are calculated for a high-resolution reference solution and for several explicit and implicit subgrid models at coarser resolution. The reference solution shows that enstrophy and energy are removed from scales very close to the truncation scale and energy is transferred (backscattered) into the large scales. Some subgrid models are able to capture the removal of enstrophy from small scales, though none are scale-selective enough; however, none are able to capture accurately the energy backscatter. We propose a scheme that perturbs the vorticity field at each time step by the addition of a particular vorticity pattern derived by filtering the predicted vorticity field. Although originally conceived as a parametrization of energy backscatter, this scheme is best interpreted as an energy fixer' that attempts to repair the damage to the energy spectrum caused by numerical truncation error and an imperfect subgrid model. The proposed scheme improves the energy and enstrophy behaviour of the solution and, in most cases, slightly reduces the root mean square vorticity errors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available